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ABSTRACT
The National Health and Nutrition Examination Survey (NHANES) has been continuously biomonitoring
Americans’ exposure to two families of harmful environmental chemicals: polychlorinated biphenyls (PCBs)
and polybrominated diphenyl ethers (PBDEs). However, biomonitoring these chemicals is expensive. To save
cost, in 2005, NHANES resorted to pooled biomonitoring; that is, amalgamating individual specimens to form
a pool and measuring chemical levels from pools. Despite being publicly available, these pooled data gain
limited applications in health studies. Among the few studies using these data, racial/age disparities were
detected, but there is no control for confounding effects. These disadvantages are due to the complexity
of pooled measurements and a dearth of statistical tools. Herein, we developed a regression-based method
to unzip pooled measurements, which facilitated a comprehensive assessment of disparities in exposure
to these chemicals. We found increasing dependence of PCBs on age and income, whereas PBDEs were
the highest among adolescents and seniors and were elevated among the low-income population. In
addition, Hispanics had the lowest PCBs and PBDEs among all demographic groups after controlling for
potential confounders. These findings can guide the development of population-specific interventions to
promote environmental justice. Moreover, both chemical levels declined throughout the period, indicating
the effectiveness of existing regulatory policies. Supplementary materials for this article are available online.
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1. Introduction

The general population is exposed to a wide range of persistent
organic pollutants. Notorious examples include two families of
organochlorine contaminants called polychlorinated biphenyls
(PCBs) and polybrominated diphenyl ethers (PBDEs). In his-
tory, PCBs were widely used as insulation fluids in capaci-
tors, transformers, and other electrical and electronic equipment
(Breivik et al. 2007), whereas PBDEs were widely used in indoor
commodities such as furniture, electronics, and plastics for their
fire-resistant properties (Abbasi, Li, and Breivik 2019). Once
released into the environment, PCBs and PBDEs can accumulate
in the human body through different routes. For instance, most
PCBs can be bound strongly to animal lipids and thus ingested
along with the consumption of lipid-rich foods like fish and
meats (Li, Arnot, and Wania 2018). By contrast, most PBDEs
are sorptive to indoor dust or hard surfaces and thus mainly
ingested via hand-to-mouth contacts like palm mouthing and
finger licking (Li et al. 2020). Once exposure occurs, the strong
binding of these chemicals to human adipose tissues precludes
their effective elimination from the human body. As such, they
can stay in the human body for years and even decades (Li,
Arnot, and Wania 2018; Li et al. 2020).

Since exposure to PCBs/PBDEs can cause adverse health
effects such as endocrine disruption, diabetes, metabolic
syndrome, and cancer (Fantke and Jolliet 2016), many countries
have included these chemicals in nationwide biomonitoring
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programs, such as Canada Health Measures Survey, Ger-
man Environmental Survey, and French National Survey on
Nutrition and Health. However, in the United States, the only
nationwide biomonitoring of these chemicals is conducted as a
part of the National Health and Nutrition Examination Survey
(NHANES), a continuous program that has been releasing
biannual data since 1999. In addition to serum concentration
levels of PCBs/PBDEs, NHANES also provides participants’
demographic information, medical examination results, and
clinical/nutritional biomarkers measurements. By now, these
data until 2016 have been made fully available on the NHANES
website.

In this article, we leverage the NHANES biomonitoring data
of PCBs and PDBEs to assess the disparities in Americans’
exposure to these chemicals. Analysis of disparities in human
chemical exposure is critical to making population-specific tai-
lored environmental health policies, safeguarding minorities
and people of lower socioeconomic status, and promoting envi-
ronmental justice. Though NHANES has been continuously
collecting and providing the measurements of PCBs and PBDEs,
chemical exposure and health studies seemed reluctant to use
them after 2004, not just in the analysis of disparities but also
in other analyses. For instance, a search on PubMed using the
keyword “PBDEs” on 11/15/2022 returned 6164 articles pub-
lished between 2005 and 2022. However, the number dropped
to 40 after adding the keyword “NHANES”. Of these 40 articles,
10 analyzed the data collected from other sources, the majority
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of the rest studies relied on data collected before 2005, and
only four actually conducted analyses involving data since 2005
(Sjödin et al. 2014, 2019; Gaylord et al. 2020; Chang et al. 2020).
Publications for PCBs follow a similar pattern: only a handful of
articles analyzed data collected after 2004 (Caudill 2012, 2015;
Bichteler et al. 2017).

The lack of usage actually results from the change in how
NHANES measures PCBs and PBDEs. In 2005, NHANES
switched from individual biomonitoring to pooled biomon-
itoring, which physically mixes several participants’ serum
samples together to form a pool and then measures chemical
levels from pooled specimens. The most appealing advantage
of pooling is cost-saving. As reported by Caudill (2012), for the
measurements of PCBs and PBDEs in the 2005/06 cycle alone,
pooled biomonitoring helped NHANES save approximately
$2.76 million in total. However, pooling masks variability
between individuals in pools, creates challenges for analysis, and
reduces the usage of NHANES when information on individuals’
chemical concentrations is required. To increase the potential for
application of NHANES’ long-term efforts, this article provides a
novel statistical regression framework for pooled biomonitoring
data. The main purpose herein is to assess the disparities, but
our method can be easily adapted to studies of other purposes
that need a regression analysis.

The handful of existing studies using NHANES pooled
biomonitoring data have provided suggestive evidence of dis-
parities in exposure to PCBs and PBDEs across subpopulations,
such as people from different racial/ethnic groups and at
different ages. For instance, Sjödin et al. (2014) found that
the serum levels of PCBs tended to increase with age, whereas
those of PBDEs did not differ significantly between different
age groups. In addition, African Americans and “other groups”
(e.g., Asian Americans) demonstrated significantly higher
levels of PCBs in serum than non-Hispanic Whites, whereas
Hispanics generally had the lowest PCBs among all racial/ethnic
groups (Sjödin et al. 2014; Nguyen et al. 2020). However,
disparities in chemical exposure likely result from complex and
tangled relationships between different demographic, economic,
lifestyle, and even cultural factors. While existing studies
focused separately on evaluating exposure disparities in a single
factor (age or race), none of them attempted to reveal how these
factors jointly determine a subpopulation’s exposure to PCBs
and PBDEs, and whether the disparities still remain if certain
key factors are controlled in statistical analysis. Inadequately
addressing confounding effects may prevent policymakers and
regulatory agencies from offering cost-effective measures for
exposure mitigation and risk management.

The regression-based approach we present is the first attempt
to address this issue. Our approach can facilitate revealing and
understanding disparities in the exposure of subpopulations
to PCBs and PBDEs based on pooled data. Specifically, the
new approach supports unzipping pooled data, hence, allowing
disentangling of various factors from each other in multivariate
regression analysis. With this approach, we systematically inves-
tigate (i) the association of age and income with serum levels of
PCBs and PBDEs, (ii) the racial/ethnic disparities in exposure
to these compounds among Americans after controlling for
confounding covariates, and (iii) the effects of national regula-
tions on the reduction in human exposure to these compounds.

Such an investigation corroborates earlier findings based on
small-scale biomonitoring studies (as opposed to the national
NHANES); for example, lower serum levels of these chemicals
among females compared to males, and the dependence of the
serum levels on age. More importantly, it provides novel insights
into these issues. For instance, when depicting racial/ethnic dis-
parities in human exposure to these compounds, this approach
for the first time allows adjusting for potential confounding
factors, such as age and income, and capturing differentiated
rates of decline in the serum level over time among racial/ethnic
groups. Such findings can hardly be obtained, or are likely to
be manipulated, by directly analyzing the pooled data due to
the interaction between variables used for pooling (age group,
gender, and race/ethnicity) and other variables (e.g., income and
obesity).

Statistically, our goal is to estimate an individual-level regres-
sion model based on pooled biomonitoring data, and we would
like to obtain an inference comparable with the one if individual
biomonitoring is used. In practice, individual biomonitoring
data are often right-skewed (see Figure S.1 in Section A of
supplementary material for the histogram of the individual-
level data obtained by NHANES before 2005). To account for
the right skewness, the standard approach adopted by environ-
mental health studies is log-transformation (see, e.g., Xu et al.
2019; Wang et al. 2019). Consequently, previous works per-
formed analyses on pooled measurements (without regression)
proceeded under the assumption that individual concentrations
of PCBs and PBDEs follow a lognormal distribution (Caudill
2012, 2015; Sjödin et al. 2014, 2019). Extending this assump-
tion to regression analysis for pooled data is very challeng-
ing, mainly because the probability density function of pooled
measurements is now a convolution in the form of intractable
integrals. Mitchell, Lyles, and Schisterman (2015) proposed an
approach yielding analytical expression of integrals under a
gamma regression model. However, this approach requires two
stringent conditions on pooling: (a) every subject in the same
pool must have identical covariate values; (b) the pooled chemi-
cal level is an arithmetic average of the individual levels. Unfor-
tunately, NHANES pooled data do not satisfy either condition.
To date, only two regression approaches have been developed
under the skewed distributional assumption on chemical levels
and no stringent conditions on pooling (Mitchell et al. 2014;
Liu, McMahan, and Gallagher 2017). However, both methods
approximate the intractable integrals using the Monte Carlo
method, which usually requires a large Monte Carlo sample size,
especially when the integral dimension is high (e.g., larger than
3). In NHANES, most pools are formed by combining eight indi-
vidual serum specimens, yielding integrals in seven dimensions.
More importantly, multiple application studies (Zota et al. 2008;
Sjödin et al. 2014, 2019) have noticed nonlinear dependents
of PBDEs exposure on age among the U.S. population, which
the above two approaches cannot capture because they only
considered linear covariate effects.

The remainder of this article is organized as follows. In
Section 2, we introduce the motivating pooled biomonitoring
data from NHANES. Section 3 presents the proposed regres-
sion framework, complete with a Markov chain Monte Carlo
(MCMC) procedure. In Section 4, we investigate the finite sam-
ple performance of the proposed approach through extensive
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simulation studies across various settings. Section 5 analyzes the
pooled measurements of three PCB congeners (PCB-99, PCB-
153, PCB-180) and three PBDE congeners (BDE-47, BDE-99,
BDE-100) and presents some insightful results. In Section 6, we
provide a concluding discussion and describe a possible future
research topic.

2. NHANES Pooled Biomonitoring Data

NHANES started collecting measurements of PCBs and PBDEs,
along with individual-level covariate information from the
1999/2000 and 2003/04 sampling cycles, respectively. Since the
2005/06 cycle and continued afterward, NHANES switched to
pooled biomonitoring for both types of chemicals. In particular,
during each cycle, NHANES randomly selects one-third of all
survey participants over 12 years whose serum sample had a
sufficient volume for laboratory testing and then physically
combines these individual specimens using a homogeneous
pooling strategy presented below. Currently, individual and
pooled measurements are available on the NHANES website
containing data collected from nine sampling cycles spanning
from 1999 to 2016 for PCBs and seven sampling cycles spanning
from 2003 to 2016 for PBDEs.

The homogeneous pooling strategy adopted by NHANES
proceeds as follows. First, individuals are assigned into different
groups defined by the stratification of (a) age group (12–19, 20–
39, 40–59, and 60+ years), (b) gender, and (c) race/ethnicity.
In each group, individuals are “homogeneous;” that is, having
similar ages and the same gender and race/ethnicity. Once the
homogeneous groups are determined, individual specimens in
the same group are physically combined to form pooled spec-
imens with sizes ranging from 2 to 8 (most are of size 8). It is
important to note that in NHANES, each participant is assigned
a sampling weight to account for under or oversampling certain
population subgroups, and to produce descriptive statistics (e.g.,
a weighted sample mean) that can accurately depict population
characteristics (Sjödin et al. 2019). In order to incorporate the
sampling weights into pooled measurements, the volume of
each individual specimen contributing to the pool is determined
based on the ratio of its sampling weight to the sum of sampling
weights of all individuals in the pool (i.e., the pooling weights are
proportional to the sampling weights). As a result, the level of a
pooled specimen is a weighted arithmetic average of individual
chemical concentrations (see Section 3.1 for more details).

In this article, we build a regression model to assess the dis-
parities in Americans’ exposure to three PCB congeners (PCB-
99, PCB-153, PCB-180) and three PBDE congeners (BDE-47,
BDE-99, BDE-100) based on the pooled measurements collected
from NHANES. Along with the pooled data, NHANES also pro-
vides individual-level information about the participants. Our
regression analysis takes the response variable as the logarithm
of a contaminant’s latent individual-level concentration level and
covariates as age, gender, race/ethnicity, obesity, and the ratio
of family income to poverty guidelines. After removing subjects
with missing values, for PCB-99 (PCB-153, PCB-180), 3104
(4152, 3856) specimens were tested individually and 6015 (6051,
6087) specimens were grouped into 784 (788, 793) pools where
708 (713, 717) pools are of size 8 and 76 (75, 76) pools are of sizes

from 2 and 7. For BDE-47, BDE-99, and BDE-100, respectively,
1842, 1299, and 1765 specimens were tested individually; for
each chemical 6087 individuals were divided into 793 pools,
including 717 pools of size 8 and 76 pools of sizes from 2 to 7.

3. Model and Method

We now introduce the regression model and present our esti-
mation procedure in a general context. Suppose specimens (e.g.,
serum or urine) were collected from N individuals and divided
into J pools, where the jth pool consists of cj individual speci-
mens, for j = 1, . . . , J. Further for the ith individual in the jth
pool, let Ỹij denote the associated chemical level that is right-
skewed, and ωij be the sampling weight. Under the assumption
that individual chemical levels are conditionally independent
given the covariates, the relationship between Ỹij and associated
covariates is described as follows

log Ỹij|Zij, Xij

= Z�
ij β +

q∑
k=1

fk(Xijk) + εij, i = 1, . . . , cj, j = 1, . . . , J, (1)

where Zij = (1, Zij1, . . . , Zijp)�, Xij = (Xij1, . . . , Xijq)� are
vectors of covariates for the ith individual in the jth pool, β =
(β0, β1, . . . , βp)� is a vector of regression coefficients, and fk(·),
k = 1, . . . , q, are unknown smooth functions. To avoid the
identifiability issue, we require fk to be centered at 0 (see Hastie
et al. (2009) and Section B of supplementary material for a more
in-depth discussion). The error terms εij’s are independent nor-
mal random variables with mean 0 and variance σ 2/ωij, a com-
monly adopted assumption to account for sampling weights in
regression (see, e.g., Pfeffermann 1993; Li, Graubard, and Korn
2010). This assumption implicitly assumes that the sampling
weights depend on the covariates but not the response variable.
We view it fits our application because NHANES determined the
sampling weights before shipping participants’ specimens to labs
for chemical analyses. We also want to note that if one ignores
the sampling weights and fits the data by setting the variance
of εij to be σ 2, the resulting point estimators of the regression
coefficients may not change much, however, the standard errors
and the resulting inference will be heavily impacted. Desired
estimates of the regression coefficients (i.e., β and fk(·), k =
1, . . . , q) in Model (1) can be obtained via off-the-shelf software
packages (e.g., gam or mgcv in R), When individual chemical
levels Ỹij’s can be observed. In the pooled biomonitoring, since
Ỹij’s are never observed, estimating (1) becomes challenging.

3.1. Augmented Data Likelihood

The estimation of Model (1) in the context of pooling relies on
how to relate the pooled measurements back to Ỹij’s. A common
assumption is that the chemical level of the jth pool (denoted
by Yj) is a weighted average of individual chemical levels in the
same pool, that is, Yj = ∑cj

i=1 wijỸij/Wj where Wj = ∑cj
i=1 wij

for some pooling weights wij’s. In Mitchell et al. (2014) and Liu,
McMahan, and Gallagher (2017), wij = 1 since they assumed
that each individual contributed the same amount of specimens
to a pool. As introduced in Section 2, NHANES determines the



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1541

volume of each individual specimen contributing to the pool
based on the ratio of its sampling weight to the sum of the
sampling weights of all individuals in the pool. Therefore, in
this article we focus on the case wij = ωij where ωij is the
sampling weight of the corresponding individual; that is, Yj =∑cj

i=1 ωijỸij/Wj and Wj = ∑cj
i=1 ωij. This assumption is stan-

dard in the studies of the NHANES pooled-biomonitoring (see,
e.g., Caudill 2012). In other practices, extending our method for
different setups of wij is not difficult.

To obtain the observed data likelihood, it is essential to derive
the probability density function (pdf) of pooled measurements.
Under the aforementioned assumptions Yj = ∑c

j=1 ωijỸij/Wj,
the pdf of Yj can be expressed as a convolution of the pdf ’s of
Ỹ1j, . . . , Ỹcjj. Unfortunately, the analytical expression of the con-
volution is not available, which hinders the use of observed data
likelihood to conduct statistical inference. Existing approaches
have used Monte Carlo method to approximate the integrals
(Mitchell et al. 2014; Liu, McMahan, and Gallagher 2017). This
technique usually requires a large size of random samples and
thus has low computational efficiency. To circumvent this issue,
we propose a data augmentation procedure; that is, introducing
individual chemical level Ỹij as a latent random variable. Note,
since Yj is known, we only need to introduce cj − 1 latent
variables, which are Ỹ2j, . . . , Ỹcjj. Let Yp = (Y1, . . . , YJ)�,
Ỹ(−1)j = (Ỹ2j, . . . , Ỹcjj)

�, and Ỹ(−1) = (Ỹ(−1)1, . . . , Ỹ(−1)J),
then the following joint distribution is obtained,

π(Yp, Ỹ(−1)|β , σ 2, η)

=
J∏

j=1

[ √
ω1j

Y∗
1j
√

2πσ 2
exp

{
−ω1j(log Y∗

1j − ηij)2

2σ 2

}
I(Y∗

1j > 0)

×
cj∏

i=2

√
ωij

Ỹij
√

2πσ 2
exp

{
−ωij(log Ỹij − ηij)2

2σ 2

}
I(Ỹij > 0)

]
,

(2)

where Y∗
1j = ω−1

1j (WjYj − ∑cj
i=2 ωijỸij), ηij = Z�

ij β +∑q
k=1 fk(Xijk), ηj = (η1j, . . . , ηcjj)

�, and η = (η1, . . . , ηJ).
There are two major obstacles in the development of an

efficient Markov chain Monte Carlo (MCMC) procedure for
posterior inference. First, the conditional distribution of latent
individual measurements Ỹij is difficult to sample from directly.
We developed an efficient Metropolis-Hastings (MH) algorithm
in Section 3.2. Second, estimating nonparametric smooth
functions is challenging as the parameter space is infinite-
dimensional. Here we propose to use penalized splines because
(a) it is easy to implement and spline coefficients can be sampled
along with regression coefficients; (b) they will not suffer from
the overfitting issue which is often experienced by regular
regression splines. Details of the penalized spline regression
are provided in Section 3.3.

3.2. Posterior Sampling of Latent Individual Chemical
Levels

From the augmented data likelihood (2), the conditional density
function of Ỹij, for i = 2, . . . , cj and j = 1, . . . , J, satisfies

π(Ỹij|σ 2, Yj, ηj, Ỹ(−1,−i)j)

∝ 1
Y∗

1jỸij
I(Ỹij > 0)I(Y∗

1j > 0)

× exp

{
−ω1j(log Y∗

1j − η1j)2 + ωij(log Ỹij − ηij)2

2σ 2

}
,

where Ỹ(−1,−i)j represents outcome values for all subjects in the
jth pool except for subject 1 and i. Sampling from the above
distribution is not straightforward, thus, we developed an MH
algorithm. Given that Y∗

1j = ω−1
1j (WjYj − ∑cj

i=2 ωijỸij) must be
positive, a natural upper bound for Ỹij is Bij = ω−1

ij (WjYj −∑cj
i′=2,i′ �=i ωi′jYi′j) for i = 2, . . . , cj, therefore, a truncated normal

distribution is employed as the proposal distribution for log Ỹij.
In particular, let Ỹ(m)

ij and σ (m) denote the values of Ỹij and σ

from the mth iteration of MCMC procedure, for i = 2, . . . , cj
and j = 1, . . . , J. Then in the (m + 1)th iteration, the proposal
distribution for log Ỹij is a truncated normal; that is,

T N
(

mean = log Ỹ(m)
ij , sd = σ (m)ω

−1/2
ij ; lower = −∞,

upper = log B(m)
ij

)
.

Formulas for B(m)
ij and the acceptance probability of the pro-

posed sample are provided in Section C.1 of supplementary
material.

3.3. Approximating Unknown Functions with Penalized
Splines

B-spline functions are popular to approximate smooth func-
tions; that is, fk(·) ≈ ∑pk

l=1 Bkl(·)αkl, for k = 1, . . . , q, where
Bkl(·) is a B-spline basis function and αkl is the corresponding
coefficient. A routine procedure of using spline functions is to
select the optimal number of knots to avoid under or overfitting
by cross-validation. This process is time-consuming if the model
includes multiple functions. A popular alternative approach is
to specify a relatively large number of knots and then penal-
ize the spline functions to avoid overfitting. Following Lang
and Brezger (2004), we specify the following priors for αk =
(αk1, . . . , αkpk)

�; that is, αk|τk ∝ exp
{−α�

k Dkαk/(2τk)
}

, where
Dk is a penalty matrix, and τk can be viewed as the inverse of
the penalty parameter and controls the smoothness of unknown
functions. Note, the matrix Dk is not necessarily full rank. Here
we let Dk = �

(r)�
k �

(r)
k , where �

(r)
k is the discrete difference

operator matrix of order r and has been widely used because it
is easy to specify and yields sparse penalty matrix (Eilers and
Marx 1996). This operator matrix is best defined recursively as
�

(r+1)

k = �
(1,r)
k �

(r)
k , where

�
(1,r)
k =

⎡⎢⎢⎢⎣
−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −1 1

⎤⎥⎥⎥⎦ ∈ R
(pk−r−1)×(pk−r),

and �
(1)

k = �
(1,0)

k . Through extensive numerical studies, we
have found that setting r = 2 is sufficient when implementing
the proposed approach; that is, α�

k �
(2)�
k �

(2)

k αk = ∑pk
l=3(αkl −
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2αk,l−1 + αk,l−2)
2. For τk, we specify a conjugate prior; that is,

τk ∼ IG(ak, bk) meaning τk has an inverse gamma prior with
predetermined parameters ak and bk. The values of hyperparam-
eters ak and bk should lead to almost flat priors for τj (Lang and
Brezger 2004). A common choice is ak = 1 and a small value for
bk. We examined bk = 0.005 and bk = 0.0005 using simulation
and did not find any noticeable difference in the estimation.
Thus, we fix ak = 1 and bk = 0.005 throughout this article.

Proceeding with the aforementioned notations and assump-
tions, we derived the joint distribution of latent variables and
parameters and obtained a full MCMC procedure. Technical
details are provided in Section C.2 of supplementary material.
In summary, our MCMC procedure iteratively samples β and
αk’s from normal distributions and σ 2 and τk’s from inverse-
gamma distributions. These explicit distributions facilitate a
computationally efficient implementation of our methods.

4. Simulation Studies

In this section, we present numerical studies to illustrate the
finite-sample performance of our proposed method. We consid-
ered two individual-level additive partially linear models, both
of which take the form

log Ỹ|Z1, Z2, Z3, X1, X2

= β0 + Z1β1 + Z2β2 + Z3β3 + f1(X1) + f2(X2) + ε,

where β = (β0, β1, β2, β3) = (1, 0.5, 0.5, −0.5)� and ε ∼
N (0, σ 2/ω) in which σ = 1 and ω is the sampling weight and
generated from U(1, 10) to ensure the ratio of the largest and
smallest weight within the same pool is less than 10, sample
as in NHANES. Moreover, we generate Z1 ∼ Bernoulli(0.5),
Z2 ∼ Bernoulli(0.3), Z3 ∼ Bernoulli(0.5), X1 ∼ U(−2, 2),
and X2 ∼ N (0, 1) to imitate the covariates gender (1 for
Male; 0 otherwise), obesity (BMI ≥ 30), race (1 for White;
0 otherwise), (scaled) age, and (standardized) ratio of family
income to poverty in the NHANES data, respectively. To account
for the correlation between gender and race, we let X1 = 4U1−2
and X3 = 
−1(U2), in which 
−1 is the quantile function of
N (0, 1), and (U1, U2)

′ follows a bivariate Gaussian copula with
a correlation coefficient ρ = 0.2, about the same as the observed
correlation between the two covariates. The f1(·) and f2(·) take
different forms in the two considered models to cover a broad
range of nonlinear patterns. In the first model (M1), we have

f1(X1) = 0.8 exp
{−0.98−1(X1 + 1)2}

+ 0.6 exp
{−1.125−1(X1 − 1)2} − 0.58,

f2(X2) = 0.7 exp
[
4−1 {−I(X2 > 0)1.22 − I(X2 < 0)1.2−2} X2

2
]

− 0.568,

where I(·) is the usual indicator function; in the second model
(M2),

f1(X1) = 0.2 sin{π(X1 − 0.5)/2.5} + 0.4
exp[{X1 + (X1 + 0.5)2I(X1 > −0.5)}/6]
− 0.288, f2(X2) = 4 exp(2X2)

5 + 5 exp(2X2)
− 0.4.

Note that we introduced the additive constants (e.g., −0.58) to
ensure E{fk(Xk)} = 0 such that fk is identifiable.

We set J = 250 to mimic a fixed-budget design (i.e., only J
assays are affordable within financial confines) and considered a
common pool size cj = c ∈ {4, 8} for all j. For each c, we gen-
erated pooled biomonitoring data following both random and
homogeneous pooling strategies. Under random pooling, we
first generated N = Jc independent and identically distributed
(iid) copies of (Ỹ , Z1, Z2, Z3, X1, X2, ω) from each model (M1
and M2), then randomly assigned the N observations to J pools,
and labeled them by (Ỹij, Zij1, Zij2, Zij3, Xij1, Xij2, ωij) for i =
1, . . . , c and j = 1, . . . , J. Finally, the jth pooled response was
calculated by Yj = W−1

j
∑c

i=1 ωijỸij with Wj = ∑cj
i=1 ωij, for

j = 1, . . . , J.
Under the homogeneous pooling strategy, instead of ran-

domly, observations with similar values of (Z1, Z3, X1) were
pooled together. This strategy emulates the NHANES study
which pooled individuals of the same gender and race and
similar ages together. Specifically, N observations were first par-
titioned into four parts, each with a distinct value of the discrete
vector (Z1, Z3)

′, respectively. Then, each part was sorted into
an increasing order with respect to X1. Following this order, we
sequentially assigned individual observations (i.e., Ỹij) to pools
of size c to generate the Yj’s. The data-generating process under
both strategies was repeated B = 500 times for each regression
model (M1 and M2) and each c ∈ {4, 8}.

For each dataset, we let regression coefficients β have a flat
prior and σ 2 follows IG(a = 0.5, b = 0.5). Priors for τk were
specified in Section 3.3. To ensure enough flexibility, Eilers and
Marx (1996) suggested specifying a relatively large number of
knots, usually between 20 and 40. In practice, we used 30 inner
knots being placed at equally-spaced quantiles of the observed
covariate values. Simulation results showed that it was enough
to guarantee sufficient accuracy for the unknown functions.
In each estimation, we discarded the first 1000 samples and
retained every 10th iterate from the next 20,000 samples. Trace
plots demonstrated our choice of the burn-in period and the
thinning factor is sufficient for excellent mixing.

Table 1 summarizes the B = 500 posterior median estimates
of β1, β2, and β3 in both models (M1 and M2) under both pool-
ing strategies when c ∈ {4, 8}. For comparison, we also included
the results under the setting c = 1; that is, the regular individual
biomonitoring. The findings from Table 1 are threefold. First,
the proposed approach can obtain accurate parameter estimates
and reliable inference results, across all considered settings. In
particular, the bias (Bias) in the estimates of β1, β2, and β3 is
close to zero, and the average of estimated posterior standard
deviation (ESE) is in close agreement with the sample standard
deviation (SSD) of the parameter estimates. The empirical cov-
erage probabilities of 95% credible intervals (CP95) are all at the
nominal level. Second, homogeneous pooling can improve the
accuracy and efficiency of estimates when compared to random
pooling. For example with homogeneous pools, the square root
of mean squared error (RMSE) for the estimates of β1 and β3
are approximately 1/

√
c of the estimates obtained using random

pools. Note, the homogeneous pools are formed by grouping
individuals of the same value of (Z1, Z3), but not Z2, thus,
estimates of β2 behave similarly under both pooling strategies.
Third, as sample size c increases, homogeneous pooling can lead
to more accurate and efficient estimates. For instance, the RMSE
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Table 1. Simulation results for Models (M1) and (M2) when c ∈ {1, 4, 8} under both random and homogeneous pooling.

c = 1 c = 4 c = 8

Model Parameter Summary Individual Random Homogeneous Random Homogeneous

M1 β1 = 0.5 Bias×100 0.106 −0.062 0.204 −0.347 −0.072
RMSE(CP95) 0.055(0.951) 0.054(0.941) 0.029(0.948) 0.057(0.932) 0.022(0.934)

SSD(ESE) 0.055(0.056) 0.054(0.055) 0.029(0.029) 0.057(0.055) 0.022(0.021)

β2 = 0.5 Bias×100 −0.030 −0.088 0.052 −0.677 −0.427
RMSE(CP95) 0.060(0.949) 0.053(0.943) 0.051(0.955) 0.050(0.956) 0.054(0.949)

SSD(ESE) 0.060(0.061) 0.053(0.054) 0.052(0.053) 0.049(0.052) 0.053(0.052)

β3 = −0.5 Bias×100 0.172 0.167 0.023 −0.066 −0.112
RMSE(CP95) 0.059(0.936) 0.055(0.935) 0.028(0.959) 0.057(0.943) 0.021(0.932)

SSD(ESE) 0.059(0.056) 0.055(0.055) 0.028(0.029) 0.057(0.056) 0.021(0.021)

M2 β1 = 0.5 Bias×100 0.206 −0.283 −0.005 −0.061 −0.044
RMSE(CP95) 0.056(0.946) 0.055(0.944) 0.028(0.958) 0.055(0.946) 0.021(0.948)

SSD(ESE) 0.056(0.056) 0.055(0.055) 0.028(0.029) 0.055(0.055) 0.021(0.021)

β2 = 0.5 Bias×100 −0.066 −0.281 −0.229 −0.374 −0.387
RMSE(CP95) 0.059(0.964) 0.056(0.930) 0.054(0.941) 0.054(0.931) 0.052(0.943)

SSD(ESE) 0.059(0.061) 0.056(0.054) 0.054(0.053) 0.054(0.052) 0.052(0.052)

β3 = −0.5 Bias×100 0.293 0.412 0.030 0.127 0.007
RMSE(CP95) 0.053(0.956) 0.055(0.939) 0.029(0.946) 0.055(0.946) 0.021(0.946)

SSD(ESE) 0.053(0.056) 0.055(0.055) 0.029(0.029) 0.055(0.055) 0.021(0.021)

NOTE: The summary statistics for β1, β2, β3 include average bias (Bias), square root of mean squared error (RMSE), sample standard deviation (SSD) of the 500 posterior
median estimates, the average of the 500 estimates of the posterior standard deviation (ESE), and empirical coverage probability of 95% credible intervals (CP95).

for the estimates of β1 and β3 when c = 8 are about 40% of the
ones when c = 1. However, the same conclusion cannot be made
when using random pooling as the RMSE stay almost the same
with increasing pool sizes.

Figure 1 summarizes the estimates of the function f1(·) in
Model (M1) under both pooling strategies when c ∈ {1, 4, 8}.
In all subfigures, we display the pointwise 2.5th, 50th (median),
and 97.5th percentiles of the B = 500 estimated functions based
on the posterior median. First, we note that all the pointwise
median curves are in nearly perfect agreement with the true
functions, meaning the proposed approach can return estimates
of f1(·) with little bias. Second, estimates of f1(·) obtained using
homogeneous pools show less variability (i.e., smaller shaded
area) when compared to the results obtained using random
pools. Third, under homogeneous pooling, larger pool size c will
help reduce the variability of estimates of f1(·). Estimates for the
function f2(·) in Model (M1) are summarized in Section D.1
of supplementary material. Recall that under the homogeneous
pooling strategy, homogeneity was not based on X2. Therefore,
estimates of f2(·) have similar performance under both pooling
strategies. The same patterns can be concluded for Model (M2)
by figures in Section D.1 of supplementary material.

Figure 2 visualizes a comprehensive comparison between
estimates under the two pooling strategies when c ∈ {1, 4, 8}.
For regression coefficients β1, β2, and β3, we display the boxplots
of the B = 500 posterior median estimates. For unknown
functions f1(·) and f2(·), we calculated the square root of
integrated squared error (RISE) of each posterior median esti-

mate; that is, RISE(̂fk) =
√

�−1 ∑�
l=1{̂fk(ul) − fk(ul)}2, where

{ul}�l=1 are evenly spaced grid points, and present the boxplot
of the 500 RISEs for each function in the bottom two rows of
Figure 2. These comparisons reinforce the significant gain
in precision and efficiency via the use of homogeneous
pooling. The same figure for Model (M2) is in Section D.1 of
supplementary material.

In addition, we considered a fixed-number-of-subjects
design, where the total number of subjects, N, is fixed to be
cJ = 2000. We let the pool size c increase from c = 1, to c = 4
(i.e., J = 500) and c = 8 (i.e., J = 250). Results are summarized
in Section D.2 of supplementary material. Under random
pooling, we see that as c increases, the variability of estimates
increases, indicating a loss of estimation efficiency, which is
expected since using a larger pool size naturally aggregates more
information in pooling. However, under homogeneous pooling,
because the homogeneity holds for Z1, Z3, and X1, we see that
the variability of estimates of β1, β2, and f1 retain nearly the
same for c ∈ {1, 4, 8}. This observation further demonstrates
the advantages of using homogeneous pooling in practice.

5. Assessing Exposures to PCBs and PBDEs

We now analyze the pooled NHANES measurements of three
PCB congeners (PCB-99, PCB-153, PCB-180) and three PBDE
congeners (BDE-47, BDE-99, BDE-100). Because these chem-
icals were collected over a span of more than a decade, we
included interactions between sampling cycles and covariates to
study the change of covariates’ effects over time. We chose the
following full model to describe the individual serum chemical
levels:

log Ỹ|T, E, X =β0 +
S∑

p=1
αpTp +

5∑
q=1

ζqEq +
S∑

p=1

5∑
q=1

γpqTpEq

+ f1(X1) + f2(X2) +
S∑

p=1

2∑
k=1

δpkTpXk + ε.

(3)

Herein, the T = (T1, . . . , TS)� in which T1 to TS are binary
indicator variables for the S previous sampling cycles before
the 2015/16 cycle (this is the reference sampling period: S =
8 for PCB, and S = 6 for PBDE) to control for the time



1544 Y. LIU ET AL.

Figure 1. Summary of estimates of f1(·) in Model (M1) when c ∈ {1, 4, 8} under both random and homogeneous pooling. In each figure, gray solid and dashed lines depict
the true function and pointwise median of 500 estimates of function, respectively. The shaded area is bound by the 2.5th and 97.5th percentiles of the 500 estimates of
function.

effect; the E = (E1, . . . , E5)�, in which E1 is the male status
indicator (= 1 if Male; = 0 if Female), E2 to E4 are binary
indicator variables for Hispanic (including Mexican American
and Other Hispanics), Non-Hispanic Black, and Other Race
(Non-Hispanic White is the reference group), respectively, and
E5 indicates obesity (BMI ≥ 30, where BMI stands for body
mass index); the X = (X1, X2)

� in which X1 denotes age at
examination (in years; ranges from 12 to 80), and X2 denotes
the ratio of family income to poverty guidelines (ranges from 0
to 5); all the TpEq and TpXk terms are interactions; and ε is a
normal random variable with mean 0 and variance σ 2/ω where
ω is the sampling weight.

It is easy to see that Model (3) is a special case of Model (1) as
we can collect the Tp’s, Eq’s, TpEq’s, and TpXk’s into the covariate
Z and the β0, αp’s, ζq’s, γpq’s, and δpk’s into the parameter β .
In our estimation, prior specifications for β , σ 2 and τk are the
same as in Section 4. The N (0, 10) is used as priors for the
coefficients of interaction terms γpq’s and δpk’s. We discarded the

first 10, 000 samples to establish the convergence of MCMC, and
then retained every 10th sample from the next 100, 000 itera-
tions. For each considered dataset, we ran three chains, and for
each chain, the initial values of regression and spline coefficients
are randomly generated from a uniform distribution between
−1 and 1. All 3 chains yield almost identical results, thus, we
summarize the posterior inference results based on the first
chain. Figure 3 presents the 95% equal tail credible intervals for
the effect of binary covariates E1 to E5 across different sampling
cycles for PCB-153 and BDE-47. Figures 4 displays the pointwise
2.5th, 50th (median), and 97.5th percentiles of the posterior
samples for unknown smooth functions across different sam-
pling cycles for PCB-153 and BDE-47, respectively. Section E
of supplementary material presents the same figures for PCB-
99, PCB-180, BDE-99, and BDE-100. As one can compare to see
that the patterns of estimates for congeners in the same chemical
family are very similar. Therefore, in the following, we mainly
discuss the results for PCB-153 and BDE-47.
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Figure 2. Simulation results for Model (M1) when c ∈ {1, 4, 8} under both random (gray box) and homogeneous (white box) pooling strategies. Each boxplot is based on
the 500 summary statistics (Mean estimates or RISE). For each row, two boxplots corresponding to c = 1 are the same as individual measurements are available. Dashed
lines in the top three rows represent the true value.

5.1. Results for PCB-153

Figure 3 displays the estimated regression coefficients for PCB-
153 in different sampling cycles. The most striking result is the
statistically significant decreasing trend in PCB-153 concentra-
tion among the U.S. population throughout 2005–2016 period.
This result indicates the effectiveness of PCB regulation and
remediation in the United States over decades.

At the significant level of 0.05, PCB-153 concentrations
among males are similar to, or higher than, females for most
sampling cycles. The lower chemical levels among females have
previously been hypothesized to be a result of reproduction
because reproduction is a remarkable mechanism for eliminat-
ing “lipophilic” chemicals that are strongly bound to human
adipose tissues from mothers (Moysich et al. 2002; Sarcinelli
et al. 2003; Bergonzi et al. 2009). Our result coincides with this
hypothesis. In addition, Figure 3 shows that obesity is negatively
correlated to PCB-153 concentration. This is likely because
obese individuals’ larger volume of adipose tissue apparently
“dilutes” PCB concentration when they take in a similar level
of PCBs as lean individuals do (Li and Wania 2017). As

Figure 3 displays, compared to Non-Hispanic Whites, Hispanic
Americans have consistently lower PCB-153 concentrations,
whereas Non-Hispanic Blacks and Other Race have higher
ones than Non-Hispanic Whites for most sampling cycles. On
the other hand, Figure 4 suggests that on average individuals
with higher family income have a similar or even higher
PCB-153 concentration, compared to those with lower family
income.

Since diet is the main pathway responsible for human intake
of PCBs, different dietary patterns between sub-populations
result in the observed disparities in chemical concentration.
An earlier comprehensive analysis (Undeman et al. 2010) has
confirmed that consumption of seafood is the most predominant
contributor, among all food items, to dietary intake of PCBs.
Therefore, individuals consuming more seafood are anticipated
to possess higher PCB concentrations. For instance, U.S. adult
men (aged 20 and over; the same hereafter) consume more
seafood than U.S. adult women, evident by the most recent
nationally representative average rates of 0.69 and 0.56 ounces
equivalent, respectively, documented in the U.S. Food Patterns
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Figure 3. Estimates of covariate effects for PCB-153 and BDE-47 across different sampling cycles. In each figure, pointwise posterior median (dot in the middle), 2.5th
(bottom bar), and 97.5th (top bar) percentiles are presented.

Equivalent Database (combining seafood low and high in n-
3 fatty acids in the database; the same hereafter) (Agricultural
Research Service 2018). This comparison agrees with our find-
ing of higher PCB-153 concentrations observed among male
participants in NHANES. Likewise, in a nationwide perspec-
tive, Hispanic adults consume less seafood (on average 0.63
ounces equivalent daily) than other racial groups (e.g., on aver-
age 0.73 and 1.06 ounces equivalent for African and Asian
Americans, respectively) (Agricultural Research Service 2018).
An earlier survey in an ethnically diverse location (Sacramento-
San Joaquin Delta in California) shows that Hispanics consume
3% to 71% less fish than Whites, African Americans, and Asians,
probably due to cultural differences (Silver et al. 2007). In addi-
tion, individuals with high income consume more seafood than
those with low income; for instance, the U.S. Food Patterns
Equivalent Database shows that individuals aged 20 and over
with family income greater than $75,000 consume on average

0.67 ounces equivalent of seafood each day, higher than the
daily rate for those with family income less than $25,000 of on
average 0.52 ounces equivalent (Agricultural Research Service
2018). This disparity is consistent with the finding from a com-
prehensive and critical review that “consumption of [...] fish [..]
was consistently associated with higher socioeconomic status
groups” due to the differences in the energy cost between food
items and in the physical accessibility to low-cost energy-dense
foods between individuals with different income levels (Dar-
mon and Drewnowski 2008). Interestingly, PCB-153 is not the
only case that increased contaminant concentrations are found
among individuals with higher income: since consumption of
seafood is also a dominant contributor to human exposure to
mercury, individuals with higher income eat more fish and have
higher blood mercury as well (Mahaffey, Clickner, and Jeffries
2009).
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Figure 4. Estimates of covariate effects for PCB-153 and BDE-47 across different sampling cycles. In each figure, the solid curve is the pointwise posterior median. The
shaded areas are bounded by the 2.5th and 97.5th percentiles.

Figure 4 also demonstrates that the PCB-153 concentra-
tion increases with age. Since PCBs resist elimination from
the human body, their concentrations in the blood reflect the
“memory” of the cumulative ongoing exposure over years and
even more than a decade (Li, Arnot, and Wania 2018). Com-
pared to younger individuals, senior individuals have a longer
history of exposure in their lives. Most of their past exposure
occurred in a time more contaminated than today, as PCB
concentrations in the U.S. environment and foods have kept
declining since the phase-out of PCBs in the late 1970s (evi-
dent by the declining temporal trend in Figure 3). For these
reasons, it is not surprising to observe an increasing trend of
chemical exposure with age, which coincides with the findings in
Quinn and Wania (2012).

5.2. Results for BDE-47

Figure 3 displays the estimated regression coefficients for BDE-
47 in different sampling cycles. The BDE-47 concentration
started declining since the 2006/07 sampling cycle, with the only
exception of a slight rebound in the 2013/14 sampling cycle,
indicating a transition from the pre-ban to post-ban periods.
This transition coincides with the decadal effort in banning
PBDEs in the United States, which started early in 2006 when
the U.S. Environmental Protection Agency proposed to end their
use and eventually succeeded in 2013 when California’s Smolder
Resistance Technical Bulletin 117 was amended (Cordner et al.
2013). Figure 3 shows that obesity plays an inconsistent role
in determining BDE-47 concentration: BDE-47 concentration
is higher among obese individuals than lean individuals for
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2007/08, 2009/10, 2011/12, and 2015/16 sampling cycles but not
significantly different from the rest of sampling cycles.

Overall, males show slightly a higher BDE-47 concentra-
tion than females (Figure 3). Hispanics, Non-Hispanic Blacks,
and Other Race all have significantly lower concentrations than
Non-Hispanic White for most sampling cycles (Figure 3). The
country of origin may contribute to the lower chemical con-
centrations in Hispanics and Non-Hispanic Blacks, given that
serum PBDE levels have been observed to be significantly lower
in foreign-born Mexican Americans than their U.S.-born coun-
terparts because the U.S. environment is more contaminated
than elsewhere (Zota et al. 2008).

Figure 4 demonstrates the dependence of BDE-47 concen-
tration on age and income among individuals sampled. It is
first noted that the three chemicals’ concentrations peak in
adolescence, decline after age 20, rebound after age 40, and
maintain stable throughout the rest of adulthood. Such a non-
monotonic trend reflects the interaction between the divergent
age dependence of ingestion and elimination of this chemical.
On the one hand, ingestion of PBDE-contaminated indoor dust
via hand-to-mouth contact is the predominant route for human
exposure to PBDEs (Li et al. 2020). Since such hand-to-mouth
contact is more prominent and frequent for children and ado-
lescents, ingestion of PBDEs is most remarkable before age 20
(Li, Hughes, and Arnot 2021). On the other hand, adults have a
longer history of exposure; continuous exposure and accumula-
tion will also lead to high levels of PBDEs in their bodies, which
causes the rebound after age 40. In addition, adults older than 60
may have a reduced hepatic biotransformation capacity, which
means they are less efficient at eliminating BDE-47 from their
bodies. However, unlike the PCBs case where contamination
maintained a continuous descending trend over the investigated
period, PBDE contamination was in a transition from pre-ban
to post-ban periods. Articles with PBDEs can still be used by
households for many years and circulate in the secondhand
market after the ban (Stapleton et al. 2011) and continue to
be a source of exposure for years. In addition, the half-life of
PBDEs is shorter than that of PCBs (Grandjean et al. 2008),
which makes it less cumulative in the body. As such, we observe a
relatively stable level of PBDEs for the rest of adulthood, instead
of the constant increase in PCB concentrations with age seen
in Section 5.1. The rich information on such age effects would
have been masked by a simple ascending linear pattern if linear
regression was used.

Figure 4 also shows that BDE-47 concentration maintains
a relatively high level for individuals with a family income to
poverty guidelines lower than 2, with the only exception for
the 2013/14 sampling cycle probably due to random errors in
sampling. A plausible explanation may be that individuals with
low income may have increased accessibility to PBDE-treated
consumer goods such as foam furniture: the cheapest furni-
ture may be flame retarded with PBDEs, while the newer and
more expensive furniture may embed alternative flame retar-
dants which are environmentally friendly (Zota, Adamkiewicz,
and Morello-Frosch 2010). Our statistical analysis reveals this
intriguing question and warrants in-depth investigation in the
future, which may not be possible to reveal by studying the
pooled biomonitoring data without regression.

6. Discussion

In this article, we developed a flexible regression-based frame-
work to assess disparities in the U.S. population’s exposure to
two families of notorious environmental chemicals (i.e., PCBs
and PBDEs) using the pooled biomonitoring measurements
collected by NHANES from 2005 to 2016. A data augmentation
procedure and penalized spline basis are used to strike a balance
between model flexibility and complexity. As pooled biomon-
itoring data for a large population is becoming increasingly
popular due to its cost-effectiveness, our method could provide
practitioners with a valuable tool to explore the underlying
associations when outcomes are subject to pooling, and increase
the depth of analysis in related environmental health research.

Using pooled biomonitoring data from NHANES, we, for the
first time, systematically investigate the disparities in exposure to
PCBs and PBDEs between subpopulations belonging to different
racial/ethnic groups, at different ages, with or without obesity,
and with different family income levels. In particular, our find-
ings show males have higher levels of exposure to both chemicals
than females. For PCBs, Hispanic have the lowest exposure levels
among all demographic groups, and both age and income are
positively associated with the serum concentrations of PCBs.
For PBDEs, Non-Hispanic White have the highest exposure
levels among all race/ethnicity groups, and obese people have
higher serum levels than non-obese people. In addition, both
age and family income exhibit nearly monotonic associations
with PCB concentrations but non-monotonic associations with
PBDE concentrations. Since multiple demographic and socioe-
conomic factors are integrated into the same statistical analy-
sis, this approach ensures adequate control for potential con-
founding factors and thus prevents possible spurious statistical
associations. We further demonstrate the need for control of
confounding by a comparison between our results and the ones
obtained by ignoring potential confounding factors. We refer
the readers to Section F of supplementary material for this
comparison.

Notably, our derived trends match well with the existing
mechanistic understandings of the main pathways responsible
for human exposure to these compounds. As such, this approach
is mechanistically sound from the perspective of environmental
health. Results of our case study help understand the differ-
ence in exposure to these chemicals among various subpopu-
lations, which facilitates the formulation and implementation
of population-specific tailored, cost-effective policies to pro-
mote environmental justice. Finally, our results also indicate
descending trends in exposures to both PCBs and PBDEs among
the U.S. population, which demonstrates the effectiveness of
regulations on the production and use of these chemicals and
the responsiveness of human exposure to environmental con-
tamination. In summary, our proposed approach enables the use
of pooled biomonitoring data for environmentally relevant and
meaningful findings.

Lastly, we conclude this article with a possible direction for
future research. In this article, we have the response variables
observed in pools. An interesting topic could be to investigate
how adverse health outcomes (e.g., diabetes or organ dysfunc-
tion) are associated with exposure to PCBs and PBDEs by lever-
aging the NHANES pooled biomonitoring data. But we would
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like to point out that, with covariates’ measurements subject to
pooling, regression analysis could be much more methodologi-
cally challenging.

Supplementary Materials

The supplementary materials contain a discussion of model identifiability
and technical details for the posterior sampling. Additional figures and
tables pertaining to simulation studies and real data analysis are also pre-
sented in the supplementary materials. Furthermore, all the codes and
data required to replicate our research are included in the supplementary
materials.
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